skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gao, Sicun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Neural networks in real-world applications have to satisfy critical properties such as safety and reliability. The analysis of such properties typically requires extracting information through computing pre-images of the network transformations, but it is well-known that explicit computation of pre-images is intractable. We introduce new methods for computing compact symbolic abstractions of pre-images by computing their overapproximations and underapproximations through all layers. The abstraction of pre-images enables formal analysis and knowledge extraction without affecting standard learning algorithms. We use inverse abstractions to automatically extract simple control laws and compact representations for pre-images corresponding to unsafe outputs. We illustrate that the extracted abstractions are interpretable and can be used for analyzing complex properties. 
    more » « less
  3. We propose new methods for learning control policies and neural network Lyapunov functions for nonlinear control problems, with provable guarantee of stability. The framework consists of a learner that attempts to find the control and Lyapunov functions, and a falsifier that finds counterexamples to quickly guide the learner towards solutions. The procedure terminates when no counterexample is found by the falsifier, in which case the controlled nonlinear system is provably stable. The approach significantly simplifies the process of Lyapunov control design, provides end-to-end correctness guarantee, and can obtain much larger regions of attraction than existing methods such as LQR and SOS/SDP. We show experiments on how the new methods obtain high-quality solutions for challenging robot control problems such as path tracking for wheeled vehicles and humanoid robot balancing. 
    more » « less
  4. We propose δ-complete decision procedures for solving satisfiability of nonlinear SMT problems over real numbers that contain universal quantification and a wide range of nonlinear functions. The methods combine interval constraint propagation, counterexample-guided synthesis, and numerical optimization. In particular, we show how to handle the interleaving of numerical and symbolic computation to ensure delta-completeness in quantified reasoning. We demonstrate that the proposed algorithms can handle various challenging global optimization and control synthesis problems that are beyond the reach of existing solvers. 
    more » « less